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Abstract:  A novel class of loss functions is introduced for the 
estimation problem where training data is available.   The 
proposed functions depend on the target value and the prediction 
separately, subject to optimality and convexity constraints.  
Necessary and sufficient conditions are specified.  Many examples 
are illustrated.  The proposed class has potential for application in 
function approximation and machine learning.

Consider the function interpolation problem of a real-valued scalar function of several real 
variables, in which training data of m instances is available in the form (xij, yi), where yi is the 
thing to be predicted, and xij is the n-dimensional data available on which to make the prediction. 
An interpolation is sought of the form ŷ=f (xij ,θk ) where f may be any function of xij and of 
the p parameters θk.  This problem may be approached by casting it as an optimization problem 
of the form:

θ = argmin J ( y , f (x ,θ))

where J is some suitable loss function.  For sake of clarity, let z denote the estimate ŷ .  Then it 
is possible to write J(y, z) for the function to be minimized.  Often this is the least squares loss:

J = ∑
i=1

m

(z i − y i)
2

or the least absolute values (LAV) loss:

J = ∑
i=1

m

|z i − y i|

which has been in use since Galileo [Bidabad, 2005].  This article proposes a new class of loss 
functions in which the loss per training example is not necessarily a function of the difference 
between the prediction and the target value z-y, but may be a general function g(z,y), subject to 



certain restrictions described in the next section.  Continue to assume that the loss is the sum of 
the separate penalties of each instance of the training data, such that:

J = ∑
i=1

m

g ( y i , z i)

Within this structure a broad class of functions may be considered for g(y, z), which may prove 
more suitable in certain applications than the least squares or least absolute values objectives.  

The terms loss function, cost function, and objective function are used interchangeably in this 
article, care only being required to distinguish the overall loss J summed over the training set 
from the component loss g of a particular instance.

Criteria
Consider the necessary conditions which must be fulfilled by any objective function g(y,z).  First, 
require g to be continuous and twice differentiable in z.  

Optimality.  A necessary condition is

∂g
∂z|z= y

= 0  (i)

Convexity.  For optimization by gradient descent, the conditions are necessary

∂g
∂z|z< y

< 0 (ii)

∂g
∂z|z> y

> 0 (iii)

Definiteness.  Impose the condition that the penalty is zero for a correct prediction:

g|z= y = 0 (iv)

As a further condition, this article will consider only the case in which

∂
2g

∂z2 > 0 , ∀ z (v)

which given (i) is sufficient but not necessary to ensure (ii) and (iii).  Thus, for any strictly 
positive expression in z, a related loss function may be obtained by integration.

Notice that for the least squares and least absolute values component functions, any 

constant factor u introduced such that g = (uz−uy )
2 may be factored out of the overall 

objective J = u2∑
i

(z i− y i)
2 meaning that the preference between machine learning models is 

independent of the unit of measure of y, so that



J (z1= f 1(x ,θ1) , y ) < J (z2=f 2(x ,θ2) , y) ⇔ u2 J (z1=f 1(x ,θ1) , y) < u2 J ( z2=f 2(z ,θ2) , y )

Symmetric Loss Functions
Consider first a simple example.  Let p denote a parameter measured in the same units as z, and 
let b denote a positive constant measured in units of loss per units of z.  Choose as a strictly 
positive expression:

∂
2g

∂z2 =
b
p2 > 0

Integrate:

∂g
∂z

=
b

p2 ∫dz =
b

p2
(z+c1)

Apply condition (i):

∂g
∂z|z= y

= 0 =
b
p2 ( y+c1)

c1 = − y
∂g
∂z

=
b
p2 (z− y )

Integrate:

g =
b
p2 ∫(z− y)dz =

b
p2 (1

2
z2

− yz + c2)
Apply condition (iv):

g|z= y = 0 =
b
p2 (1

2
y2

− y2
+c2)

c2 =
1
2

y2

g =
b
2 ( z− y

p )
2

Setting b = p = 1 and neglecting the constant 
factor of  ½ gives

g = (z− y )
2

and so the least squares loss proves to be an 
especially simple case of the broader class of 
bivariate loss functions.  

Contours of least-squares loss are parallel 
and symmetric.



As another familiar example, take the step function:

∂g
∂z

= {
−1 , z< y

undefined , z= y
+1 , z> y }

which satisfies (ii) and (iii) and does not violate (i) in the sense that
∂g
∂z

is undefined at zero.  

Thus,

g = ∫{−1 , z< y
+1 , z> y }dz = {−z + cn, z< y

+z + c p , z> y}
Apply condition (iv)

g|z= y = 0 = − y + cn = + y + c p

cn = y
c p = − y

So

g = {−z + y , z< y
z − y , z> y } = |z− y|

which admittedly would not have been discovered under the present criteria but can be seen to be 
consistent with them.

Asymmetric Loss Functions
The LINEX (LINear EXponential) function, attributed to Hal R. Varian, 1975, is given by 

L(Δ) = b eaΔ
− c Δ − b

It has the interesting property of merging a linearly increasing penalty for underestimation with a 
exponentially increasing penalty for overestimation (or vice versa depending on the parameters.)  
[Zellner, 1986] observes "for a minimum to exist at Δ = 0, we must have ab = c" and thus:

L(Δ) = b ( eaΔ
− aΔ − 1 )

To derive the LINEX function, begin with an expression which satisfies condition (v) for a ≠ 0.

∂
2g

∂z2 = a2 e(a (z− y))
> 0

∂g
∂z

= a2
∫e(a (z− y))dz = a e(a (z− y))

+ c1

Apply condition (i)



∂g
∂z|z= y

= 0 = a e(a (y− y ))
+ c1

c1 = −a
∂g
∂z

= a e(a (z− y)) − a

g = a∫ ( e(a (z− y))
− 1 ) dz = e(a (z− y))

− az + c2

Apply condition (iv)

g|z= y = 0 = e(a ( y− y))
− ay+c2

c2 = ay − 1

g = e(a ( z− y))
− a (z− y )− 1

which may be recognized as Varian's LINEX loss 
function for b = 1, where Δ = z – y.

The introduction of asymmetric loss is an 
important development for applications where 
overestimation may be more costly than 
underestimation, or vice versa.  For example, in 
dam design [Zellner, 1986] overestimation of peak 
water levels may cause excessive construction 
costs, but underestimation may cause the breach of 
the dam.  

Bivariate Loss Functions
The loss functions considered so far have all been 
functions of the difference z - y.  It may be 

advantageous in some circumstances to allow the more general case in which g(y,z) can not be 
reduced to a function of the single variable Δ = z – y.  A bivariate loss function depends on both 
the training data and the prediction.  To motivate the concept, consider a machine-learning 
system that predicts winners in a horse race.  The situation is asymmetric.  There are many races 
on which to bet.   Underestimating a horse's speed is a missed opportunity, but there are many 
such opportunities.  Overestimating a horse's speed, on the other hand, leads to the irretrievable 
loss of money.  The function therefore must penalize overestimation more harshly than 
underestimation, but not in a constant manner across all instances.  Since the gambler will not bet 
horses he predicts will lose, these cases are unimportant.  He must be able to distinguish good 
horses from bad horses, but it is needless for him to distinguish bad horses from terrible horses.

Contours of LINEX loss are parallel but not 
symmetric.



As a typical example, consider an agronomist concerned with improving a breed of hog.  Based 
on the curliness of its tail at birth, he would like to predict its weight at slaughter.  The objective 
is asymmetric.  Overestimation is more harmful than underestimation, because meager research 
funding affords only a few hogs to be raised, while piglets are cheaply available.

It is not required for the weights of small hogs to be evaluated very precisely.  They will 
not be selected, and are in a sense irrelevant.  Attention must be given to examples with large 
positive values.  Take the expression satisfying (v):

∂
2g

∂z2 = ((z − y)2
+ 1) ez

> 0

Nondimensionalize the expression by introducing parameters a and b such that:

∂
2g

∂z2 =
b2

a4 (( z − y
b )

2

+ 1) ez /a

Then by aid of computer algebra:

∂g
∂z

=
1
a {[( z − y

a )
2

− 2( z − y
a ) +

b2

a2 + 2] ez /a
− [ b2

a2 + 2] e y/a}
g = [( z − y

a )
2

− 4
z − y

a
+

b2

a2 + 6] ez /a
− [(b2

a2 + 2) z − y
a

+
b2

a2 + 6] ey /a

Let this component function be called the 
"Funnel" for the shape of its graph.  The contours 
are not parallel, because the loss is not a function 
of the difference z-y.  Loss increases with 
increasing error more quickly for positive values 
than for negative values.  Thus, the machine-
learning system does not need to adapt the 
parameters as much for the small instances.

As a further ludicrous example, consider 
the case of a delivery boy who must bring pizza to 
a haunted house while avoiding a malevolent 
ghost.  The ghost may appear at any time, but can 
only do injury to mortals around midnight.  The 
delivery boy, being of a scientific turn of mind, 
has collected the schedules of former delivery 
boys who have perished under mysterious 
circumstances, as well as suitable data on zodiac signs, water level in the Nile River, and 
pronouncements of the Federal Reserve chairmen, and wishes to use this information to optimize 
the parameters of a machine learning system for predicting the time of appearance of the ghost.

Contours of funnel loss are neither parallel 
nor symmetric.



To avoid encountering the ghost, occurrences with a small |y| must be estimated precisely, 
while large |y| may be roughly approximated.  To optimize the parameters of the prediction 
system, instances (xij,yi) of small |y| must be emphasized.  This can of course be accomplished by 
weighting the objective function, for example

J = ∑
i

wi ( zi − y i )
2

Nevertheless, a loss function that naturally accounts for this is an intriguing possibility worth 
exploring.  Take the threat posed by the ghost and the cost of a missed delivery to be both 
inversely proportional to the square of the time from away from midnight.1  However, 

h =
1

y2 z2

is not a loss function.  Differentiate:

∂h
∂z

=
−2

y2
z−3

∂
2h

∂z2
=

6

y2
z−4

This motivates the strictly positive expression:

∂
2g

∂z2 =
1

( y2 + 1 ) ( z2 + 1 )
2 > 0

where padding has been added to remove the poles at y=0 and z=0.  Introduce scale parameters p 
and q, then by aid of computer algebra:

∂
2g

∂z2 =
1
q2

1

(
y
p
)

2

+ 1

1

(( z
q
)
2

+ 1)
2

∂g
∂z

=
1

2 q
1

( y
p )

2

+ 1 [arctan (
z
q
)− arctan(

y
q
) +

z
q

( z
q )

2

+ 1
−

y
q

( y
q )

2

+ 1 ]
g =

1
2 (

1

(
y
p
)

2

+ 1 ) ( z
q (arctan(

z
q
)− arctan(

y
q
)) −

z− y
q

y
q

(
y
q
)

2

+ 1 )
1 More realistic assumptions would suppose the delivery boy adjusts his arrival to be either earlier or later than 

the predicted appearance of the ghost.  This would result in a discontinuity, putting the problem beyond the 
reach of ordinary calculus.



Let this component function be called the "Hourglass."  It is instructive at this point to compare 
the contour plots of a weighted least squares component function that downweights training 
instances far from zero, for example

g =
1

y2
+ 1

(z − y)2

with the hourglass function just derived.  Both schemes assign severe penalties for small y only.  
Notice that the plots are not symmetric about the correctness line y = z.  The cost of estimating 
that the ghost will appear when it will not is not the same as the cost of estimating that the ghost 
will not appear when it will.

The present example demands precision for values near zero.  The prior example 
demands precision for large positive values.  A third natural possibility is to demand precision for 
both large positive and large negative values.  One such function is given in the appendix.

Discussion
By the linearity of the integral operator, any loss function derived from an expression in y results 
in a weighted least squares objective.

It is interesting to observe that the second integral of a valid objective component 
function is another objective component function.  For example, the second integral of the least-
squares loss is the least-fourths loss:

g = (z − y )
4



Convergence may be slower, because a function for which ∂
2g

∂z2 = 0 at z = y is nearly flat at 

its minimum.

All component loss functions have the same minimum, which is zero when the estimate is 
equal to the training value.  They behave differently when summed over a training set.  The 
machine learning system does not reach perfect prediction.  Various loss functions lead to various 
compromises based on the assumptions about which errors are most harmful.

A component function that depends on y can represent the importances of the various 
events to be predicted.  A component function that depends on z can represent the costs of the 
various actions to be taken in response to the prediction.

Much attention has been given in the literature to alternative loss functions, especially the 
least absolute values (LAV) or ℓ1 loss g = |z - y|.  The LAV loss is a distance between a vector of 
predictions and training examples under the ℓ1 metric.  The ℓ1 metric is an instance of the 

Minkowski ℓp metric which proposes that the distance between points in ℝ
M  may be 

measured as 

d =
p√∑

i=1

M

(zi − y i)
p

Since low-order (p < 2) loss functions are of special interest, it is worth observing that condition 
(v) eliminates functions that increase more slowly than the absolute value.  For example

g = ln(1 + (z − y )
2
)

is a convex loss function, but its second derivative 

−4 (z − y)2

(1 + (z − y )
2
)

2 +
2

1 + (z − y)2

is negative for (z − y)2
> 1.

A common argument is that LAV is advantageous because it is less sensitive to large 
values of z - y, and that such outliers are likely spurious.  In a contrary situation, when the data 
are quite reliable, it may be preferable to minimize the worst-case error, in which a high-order 
metric such as ℓ∞ is appropriate.  However, taking into account the costs incurred by different 
values of y or z, it is by no means certain that the greatest difference z - y is really the worst case.

Another frequently used error measure is the relative error (z-y)/y.  The present article has 
restricted attention to functions suitable for all real y and z, and has avoided relative error due to 
the need to avoid division by zero.  A few functions suitable only for positive y and z are given in 
the appendix.  The bottleneck-shaped functions (arctangent, hyperbolic tangent, and normal 
losses) serve a similar purpose in penalizing heavily the errors on instances of small magnitude.



Conclusion
Bavariate loss functions represent a significant advance towards greater generality.  Severity of 
loss may vary across the range of target values, and may also vary across the range of 
predictions.  This added degree of flexibility allows models to be optimized directly to tasks, 
rather than optimized for prediction as such.  Their application remains to be explored.
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A Gallery of Loss Functions

Attached for reference is a listing of loss component functions g(y,z) where the overall loss 
function 

J = ∑
i=1

m

g( y , z )

is a sum of the loss components g for each instance over a data set of size m. 
Let y denote the given value to be estimated, and let z = ŷ denote the estimate.
Let a, b, p, and q denote parameters measured in the same units as y and z.
Let α denote a parameter measured inverse to the units of y and z.

Functions for all real y and z
Least Absolute Values
Least Squares
LINEX
Exponential
Arctangent
Quartic
Cosine Squared
Hyperbolic Sine
Hyperbolic Tangent
Arc Hyperbolic
Normal
Funnel
Hourglass

Functions for positive y and z
Symmetric Ratio
Ratio-1
Ratio-2
Ratio-3



Least Absolute Values

∂
2g

∂z2 = 0 , z ≠ y

∂g
∂z

= {−1 , z < y
+1 , z > y }

g = |z − y|



Least Squares

∂
2g

∂z2 = 1 > 0

∂g
∂z

= z − y

g =
1
2

(z − y )
2



LINEX 
(Varian, 1975)

∂
2g

∂z2 = α
2eα(z − y)

> 0

∂g
∂z

= α eα(z − y)
− α

g = eα(z − y)
− α(z − y) − 1



Exponential

∂
2g

∂z2 =
1
p2 e

z
p > 0

∂g
∂z

=
1
p

(e
z
p − e

y
p )

g = e
z
p − (( z − y

p
) + 1) e

y
p



Arctangent

∂
2g

∂z2 =
1

z2
+ p2 > 0

∂g
∂z

=
1
p (arctan (

z
p
)−arctan (

y
p
))

g =
z
p (arctan (

z
p
)− arctan (

y
p
)) −

1
2

ln(
1+(

z
p
)

2

1+(
y
p
)

2 )



Quartic

∂
2g

∂z2 = z2
> 0

∂g
∂z

=
1
3
(z3

− y3
)

g =
1

12
z4

−
1
3

y3 z +
1
4

y4



Cosine Squared
∂

2g
∂z2 =

1
p2 (cos(

z
p
))

2

=
1

2 p (1 + cos (
2 z
p

))

∂g
∂z

=
1

2 p (( z − y
p

) +
1
2 (sin(

2 z
p

) − sin (
2 y
p

)))

g =
1
4 (( z − y

p
)

2

− (
z − y

p
) sin(

2 y
p

) −
1
2 (cos(

2 z
p

)− cos (
2 y
p

)))



Hyperbolic Sine

∂
2g

∂z2 =
1
p2 cosh (

z
p
) > 0

∂g
∂z

=
1
p (sinh(

z
p
) − sinh(

y
p
))

g = cosh (
z
p
) − cosh (

y
p
) − (

z − y
p

) sinh(
y
p
)



Hyperbolic Tangent

∂
2g

∂z2 =
1
p2 (sech (

z
p
))

2

> 0

∂g
∂z

=
1
p ( tanh(

z
p
)− tanh (

y
p
))

g = ln(
cosh (

z
p
)

cosh (
y
p
)) − ( z − y

p ) tanh(
y
p
)



Arc Hyperbolic

∂
2g

∂z2 =
1
p2

1

√(
z
p
)

2

+ 1

> 0

∂g
∂z

=
1
p (asinh(

z
p
) − asinh (

y
p
))

g =
z
p (asinh(

z
p
) − asinh(

y
p
)) − (√(

z
p
)

2

+ 1 − √(
y
p
)

2

+ 1)



Normal

∂
2g

∂z2 =
1
p2 e

−(
z
p
)

2

> 0

dg
dz

= √π
2 p (erf (

z
p
)− erf(

y
p
))

g =
1
2 (√π

z
p (erf(

z
p
) − erf (

y
p
)) + e

−(
z
p
)

2

− e
−(

y
p
)

2

)



Funnel

∂
2g

∂z2 =
b2

a4 (( z − y
b

)
2

+ 1) e
z
a

∂g
∂z

=
1
a [( z − y

a
)

2

− 2(
z − y

a
) +

b2

a2 + 2] e
z
a −

1
a [ b2

a2 + 2] e
y
a

g = [( z − y
a

)
2

− 4 (
z − y

a
) +

b2

a2 + 6] e
z
a − [( b2

a2 + 2) (
z − y

a
) +

b2

a2 + 6] e
y
a



Hourglass
∂

2g
∂z2 =

1
q2

1

(
y
p
)

2

+ 1

1

(( z
q
)
2

+ 1)
2

∂g
∂z

=
1

2q
1

( y
p )

2

+ 1 [arctan (
z
q
)− arctan(

y
q
) +

z
q

( z
q )

2

+ 1
−

y
q

( y
q )

2

+ 1 ]
g =

1
2 (

1

(
y
p
)

2

+ 1 ) ( z
q (arctan(

z
q
)− arctan(

y
q
)) −

z− y
q

y
q

(
y
q
)

2

+ 1 )



It is unnecessary to parameterize the ratio losses.  In the symmetric and Ratio-2 functions, the 
units cancel.  In Ratio-1 and Ratio-3, change of the unit of measure merely scales the result by a 
constant factor.

Symmetric Ratio

∂
2g

∂z2
=

ln (
y
z
) + 1

z2
   y, z > 0

∂g
∂z

=
1
z

ln(
z
y
)

g =
1
2

(ln (
z
y
))

2

This is equivalent to the least-squares function on 
log-transformed variables.



Ratio-1

∂
2g

∂z2 =
1
z

∂g
∂z

= ln(
z
y
)

g = z ln(
z
y
) − (z − y)



Ratio-2

∂
2g

∂z2 =
1
z2

  

∂g
∂z

= −
1
z

+
1
y

g =
z
y

+ ln(
y
z
) − 1

Interestingly, this is equivalent to the LINEX 
function on log-transformed variables.



Ratio-3

∂
2g
∂z

= z−3

∂g
∂z

= −
1
2

z−2
+

1
2

y−2

g =
1
2

1
z

+
1
2

z

y2
−

1
y


